Yamira Cepero-Betancourt, Mauricio Opazo-Navarrete. Anja E.M. Janssen, Gipsy Tabilo-Munizaga, Mario Pérez-Wona. Effects of high hydrostatic pressure (HHP) on protein structure and digestibility of red abalone (Haliotis rufescens) muscle
DOI: https://doi.org/10.1016/j.ifset.2019.102282
Link: https://www.sciencedirect.com/science/article/pii/S146685641930699X
Resumen
The seafood industry uses high hydrostatic pressure (HHP) technology to reduce undesirable sensory changes and preserve the functional and nutritional properties of compounds. The HHP experiments contributed to unravel the impact of the different level pressure on digestibility. HHP treatment can change the secondary structures of proteins and improve the protein digestibility as function the pressure level. The results of this study provide valuable information for the potential application of HHP on the development of red abalone with high-nutritional value.
Keywords
High hydrostatic pressure; Abalone; Fourier transform infrared spectroscopy; Protein secondary structure; Digestibility
Claudia E. Osorio, Nuan Wen, Jaime H. Mejías, Shannon Mitchell, Diter von Wettstein and Sachin Rustgi. Directed-Mutagenesis of Flavobacterium meningosepticum Prolyl-Oligopeptidase and a Glutamine-Specific Endopeptidase From Barley. Front. Nutr., 18 February 2020
Resumen
Wheat gluten proteins are the known cause of celiac disease. The repetitive tracts of proline and glutamine residues in these proteins make them exceptionally resilient to digestion in the gastrointestinal tract. These indigested peptides trigger immune reactions in susceptible individuals, which could be either an allergic reaction or celiac disease. Gluten exclusion diet is the only approved remedy for such disorders. Recently, a combination of a glutamine specific endoprotease from barley (EP-B2), and a prolyl endopeptidase from Flavobacterium meningosepticum (Fm-PEP), when expressed in the wheat endosperm, were shown to reasonably detoxify immunogenic gluten peptides under simulated gastrointestinal conditions. However useful, these “glutenases” are limited in application due to their denaturation at high temperatures, which most of the food processes require. Variants of these enzymes from thermophilic organisms exist, but cannot be applied directly due to their optimum activity at temperatures higher than 37°C. Though, these enzymes can serve as a reference to guide the evolution of peptidases of mesophilic origin toward thermostability. Therefore, a sequence guided site-saturation mutagenesis approach was used here to introduce mutations in the genes encoding Fm-PEP and EP-B2. A thermostable variant of Fm-PEP capable of surviving temperatures up to 90°C and EP-B2 variant with a thermostability of up 60°C were identified using this approach. However, the level of thermostability achieved is not sufficient; the present study has provided evidence that the thermostability of glutenases can be improved. And this pilot study has paved the way for more detailed structural studies in the future to obtain variants of Fm-PEP and EP-B2 that can survive temperatures ~100°C to allow their packing in grains and use of such grains in the food industry.
Burgos-Díaz, C., Opazo-Navarrete, M., Soto-Añual, M., Leal-Calderón, F., Bustamante, M. (2020). Food-grade Pickering emulsion as a novel astaxanthin encapsulation system for making powder-based products: Evaluation of astaxanthin stability during processing, storage, and its bioaccessibility. Food Research International 134.
Link: https://www.
Resumen
Keywords: Pickering emulsions; Protein aggregates; Astaxanthin; Encapsulation; AluProt-CGNA; Lupinus luteus