Seleccione el año que desea consultar:

Naveas Nelson; Pulido Ruth; Torres-Costa Vicente; Agulló-Rueda Fernando; Santibáñez Mauricio; Malano Francisco; Recio-Sánchez Gonzalo; Garrido-Miranda Karla; Manso-Silván Miguel and Hernández-Montelongo Jacobo. (2023). Antibacterial Films of Silver Nanoparticles Embedded into Carboxymethylcellulose/Chitosan Multilayers on Nanoporous Silicon: A Layer-by-Layer Assembly Approach Comparing Dip and Spin Coating. International Journal of Molecular Sciences 2023.


The design and engineering of antibacterial materials are key for preventing bacterial adherence and proliferation in biomedical and household instruments. Silver nanoparticles (AgNPs) and chitosan (CHI) are broad-spectrum antibacterial materials with different properties whose combined application is currently under optimization. This study proposes the formation of antibacterial films with AgNPs embedded in carboxymethylcellulose/chitosan multilayers by the layer-by-layer (LbL) method. The films were deposited onto nanoporous silicon (nPSi), an ideal platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. We focused on two alternative multilayer deposition processes: cyclic dip coating (CDC) and cyclic spin coating (CSC). The physicochemical properties of the films were the subject of microscopic, microstructural, and surface–interface analyses. The antibacterial activity of each film was investigated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria strains as model microorganisms. According to the findings, the CDC technique produced multilayer films with higher antibacterial activity for both bacteria compared to the CSC method. Bacteria adhesion inhibition was observed from only three cycles. The developed AgNPs–multilayer composite film offers advantageous antibacterial properties for biomedical applications.

Burgos-Díaz César; Garrido-Miranda Karla; Palacio Daniel; Chacón-Fuentes Manuel; Opazo-Navarrete Mauricio; Bustamante Mariela. (2023). Food-Grade Oil-in-Water (O/W) Pickering Emulsions Stabilized by Agri-Food Byproduct Particles. Colloids Interfaces.


In recent years, emulsions stabilized by solid particles (known as Pickering emulsions) have gained considerable attention due to their excellent stability and for being environmentally friendly compared to the emulsions stabilized by synthetic surfactants. In this context, edible Pickering stabilizers from agri-food byproducts have attracted much interest because of their noteworthy benefits, such as easy preparation, excellent biocompatibility, and unique interfacial properties. Consequently, different food-grade particles have been reported in recent publications with distinct raw materials and preparation methods. Moreover, emulsions stabilized by solid particles can be applied in a wide range of industrial fields, such as food, biomedicine, cosmetics, and fine chemical synthesis. Therefore, this review aims to provide a comprehensive overview of Pickering emulsions stabilized by a diverse range of edible solid particles, specifically agri-food byproducts, including legumes, oil seeds, and fruit byproducts. Moreover, this review summarizes some aspects related to the factors that influence the stabilization and physicochemical properties of Pickering emulsions. In addition, the current research trends in applications of edible Pickering emulsions are documented. Consequently, this review will detail the latest progress and new trends in the field of edible Pickering emulsions for readers.

Escobar, Karen; Garrido-Miranda Karla; Pulido, Ruth; Naveas, Nelson; Manso, Miguel; Hernandez, Jacobo. (2023). Coatings of Cyclodextrin/Citric-Acid Biopolymer as Drug Delivery Systems: A Review. Pharmaceutics.


In the early 2000s, a method for cross-linking cyclodextrins (CDs) with citric acid (CTR) was developed. This method was nontoxic, environmentally friendly, and inexpensive compared to the others previously proposed in the literature. Since then, the CD/CTR biopolymers have been widely used as a coating on implants and other materials for biomedical applications. The present review aims to cover the chemical properties of CDs, the synthesis routes of CD/CTR, and their applications as drug-delivery systems when coated on different substrates. Likewise, the molecules released and other pharmaceutical aspects involved are addressed. Moreover, the different methods of pretreatment applied on the substrates before the in situ polymerization of CD/CTR are also reviewed as a key element in the final functionality. This process is not trivial because it depends on the surface chemistry, geometry, and physical properties of the material to be coated. The biocompatibility of the polymer was also highlighted. Finally, the mechanisms of release generated in the CD/CTR coatings were analyzed, including the mathematical model of Korsmeyer–Peppas, which has been dominantly used to explain the release kinetics of drug-delivery systems based on these biopolymers. The flexibility of CD/CTR to host a wide variety of drugs, of the in situ polymerization to integrate with diverse implantable materials, and the controllable release kinetics provide a set of advantages, thereby ensuring a wide range of future uses.